Fri, Oct 28, 2016 | updated 09:21 PM IST

Your smart watch can steal your ATM pin

Updated: Jul 07, 2016 14:29 IST

Washington D.C., July 7 (ANI): A new research says that wearable devices can give away your passwords.

Scientists from Binghamton University and the Stevens Institute of Technology combined data from embedded sensors in wearable technologies, such as smart-watches and fitness trackers, along with a computer algorithm to crack private PINs and passwords with 80-percent accuracy on the first try and more than 90-percent accuracy after three tries.

"Wearable devices can be exploited. Attackers can reproduce the trajectories of the user's hand then recover secret key entries to ATM cash machines, electronic door locks and keypad-controlled enterprise servers," said researcher Chen Wang.

Researchers conducted 5,000 key-entry tests on three key-based security systems, including an ATM, with 20 adults wearing a variety of technologies over 11 months. The team was able to record millimeter-level information of fine-grained hand movements from accelerometers, gyroscopes and magnetometers inside the wearable technologies regardless of a hand's pose.

Those measurements lead to distance and direction estimations between consecutive keystrokes, which the team's "Backward PIN-sequence Inference Algorithm" used to break codes with alarming accuracy without context clues about the keypad.

According to the research team, this is the first technique that reveals personal PINs by exploiting information from wearable devices without the need for contextual information.

The findings are an early step in understanding security vulnerabilities of wearable devices. Even though wearable devices track health and medical activities, their size and computing power doesn't allow for robust security measures, which makes the data within more vulnerable to attack.

The team did not have a solution for the problem in the current research, but did suggest that developers "inject a certain type of noise to data so it cannot be used to derive fine-grained hand movements, while still being effective for fitness tracking purposes such as activity recognition or step counts."

The team also suggests better encryption between the wearable device and the host operating system.

The study has been published in paper 'Friend or Foe?: Your Wearable Devices Reveal Your Personal PIN.' (ANI)