Proteins 'not dependent on water to survive and function'

   Apr 14, 6:59 pm

Washington, April 14 (ANI): Scientists at the University of Bristol have debunked one of the key beliefs in chemistry: that proteins are dependent on water to survive and function.

The findings could eventually lead to the development of new industrial enzymes.

Proteins are large organic molecules that are vital to every living thing, allowing us to convert food into energy, supply oxygen to our blood and muscles, and drive our immune systems.

Since proteins evolved in a water-rich environment, it is generally thought that they are dependent on water to survive and function.

Proteins consist of one or more polypeptides - chains of amino acids held together by peptide bonds. If a protein in water is heated to temperatures approaching the boiling point of water, these chains will lose their structure and the protein will denature (unfold).

A classic example of denaturing occurs when an egg is hard-boiled: the structures of the proteins in the egg unfold with temperature and stick together creating a solid. In the egg's case, this process cannot be reversed - however there are many examples where cooling the protein results in refolding of the structure.

Previously, it was thought that water was essential to the refolding process, however the Bristol findings suggest this isn't necessarily the case.

Using a spectroscopic technique called circular dichroism, Dr Adam Perriman of Bristol's School of Chemistry and colleagues have shown that the oxygen-carrying protein myoglobin can refold in an environment that is almost completely devoid of water molecules.

"We achieved this by attaching polymer molecules to the surface of the protein and then removing the water to give a viscous liquid which, when cooled from a temperature as high as 155 degree C, refolded back to its original structure," said Dr Perriman.

"We then used the Circular Dichroism beamline (B23) at Diamond Light Source, the UK's national synchrotron science facility in Oxfordshire, to track the refolding of the myoglobin structure and were astounded when we became aware of the extremely high thermal resistance of the new material," he added.

These findings could pave the way for the development of new industrial enzymes where hyper-thermal resistance would play a crucial role, in applications ranging from biosensor development to electrochemical reduction of CO2 to liquid fuels.

The study was published this month in Chemical Science. (ANI)

Time to explore Venus with 'inflatable aircraft' May 26, 5:04 pm
Washington, May 26 (ANI): Exploring Venus will now seem to be easier with Northrop Grumman's new idea of an inflatable aircraft.
Full Story
Madagascar's `colourful` panther chameleon actually comprises of 11 different species May 26, 3:11 pm
Washington, May 26 (ANI): A new study has brought panther chameleon into limelight in Madagascar which is actually composed of eleven different species.
Full Story
Scientist warns of humans-turned-robots taking over the world May 26, 2:25 pm
London, May 26 (ANI): A top boffin has warned that in the future, chances are that the world will be ruled by humans who have turned into cyborgs.
Full Story
'Pain sensing' gene shows hope for new ways to relieve pain May 26, 1:58 pm
Washington, May 26 (ANI): Scientists have discovered a pain-sensing gene that can lead to development of new ways to relieve pain.
Full Story
Comments

LATEST STORIES
TOP VIDEO STORIES
PHOTO GALLERY