Stress breaks loops holding short-term memory together

   Sep 14, 1:24 pm

Washington, September 14 (ANI): In a new study, researchers have revealed just how stress can addle the mind, as well as how neurons in the brain's prefrontal cortex help "remember" information in the first place.

Stress has long been pegged as the enemy of attention, disrupting focus and doing substantial damage to working memory - the short-term juggling of information that allows us to do all the little things that make us productive.

Working memory is short-term and flexible, allowing the brain to hold a large amount of information close at hand to perform complex tasks. Without it, you would have forgotten the first half of this sentence while reading the second half. The prefrontal cortex is vital to working memory.

"In many respects, you'd look pretty normal without a prefrontal cortex," Craig Berridge, from the University of Wisconsin-Madison, said.

"You don't need that part of the brain to hear or talk, to keep long-term memories, or to remember what you did as a child or what you read in the newspaper three days ago," Berridge said.

But without your prefrontal cortex you'd be unable to stay on task or modulate your emotions well.

"People without a prefrontal cortex are very distractible, Berridge said.

"They're very impulsive. They can be very argumentative," he said.

The neurons of the prefrontal cortex help store information for short periods. Like a chalkboard, these neurons can be written with information, erased when that information is no longer needed, and rewritten with something new.

It's how the neurons maintain access to that short-term information that leaves them vulnerable to stress.

David Devilbiss, lead author of the study, applied a new statistical modelling approach to show that rat prefrontal neurons were firing and re-firing to keep recently stored information fresh.

"Even though these neurons communicate on a scale of every thousandth of a second, they know what they did one second to one-and-a-half seconds ago," Devilbiss said.

"But if the neuron doesn't stimulate itself again within a little more than a second, it's lost that information," he said.

Apply some stress - in the researchers' case, a loud blast of white noise in the presence of rats working on a maze designed to test working memory - and many neurons are distracted from reminding themselves of ... what was it we were doing again?

"We're simultaneously watching dozens of individual neurons firing in the rats' brains, and under stress those neurons get even more active," Devilbiss said.

"But what they're doing is not retaining information important to completing the maze. They're reacting to other things, less useful things," he said.

Without the roar of white noise, which has been shown to impair rats in the same way it does monkeys and humans, the maze-runners were reaching their goal about 90 percent of the time. Under stress, the animals completed the test at a 65 percent clip, with many struggling enough to fall to blind chance.

Recordings of the electrical activity of prefrontal cortex neurons in the maze-running rats showed these neurons were unable to hold information key to finding the next chocolate chip reward. Instead, the neurons were frenetic, reacting to distractions such as noises and smells in the room.

The effects of stress-related distraction are well-known and dangerous.

"The literature tells us that stress plays a role in more than half of all workplace accidents, and a lot of people have to work under what we would consider a great deal of stress," Devilbiss said.

"Air traffic controllers need to concentrate and focus with a lot riding on their actions. People in the military have to carry out these thought processes in conditions that would be very distracting, and now we know that this distraction is happening at the level of individual cells in the brain," he added.

The study has been recently published in the journal PLOS Computational Biology. (ANI)

New highly sensitive malaria-detecting assays may help beat disease Mar 4, 12:05 pm
Washington, Mar 4 (ANI): An international team of scientists has come up with new assays that can detect malaria parasites in human blood at very low levels, which may be helpful in the campaign to eradicate the disease.
Full Story
Here's how brain makes us want, have and even inhibit sex Mar 3, 3:05 pm
Washington, Mar. 03 (ANI): A new study has provided a deeper insight into how brain is involved in wanting, having and inhibiting sex.
Full Story
You may act more like your mom, but you're genetically more like your dad Mar 3, 2:01 pm
Washington, Mar 3 (ANI): A first of its kind study revealed that mammals are genetically more like their fathers.
Full Story
Nitrate supplements help increase endurance in athletes Mar 3, 1:00 pm
Washington, Mar 3 (ANI): A new study has demonstrated that intake of nitrate, a nitric oxide metabolite, can help in increasing the athletic performance.
Full Story
Comments

LATEST STORIES
TOP VIDEO STORIES
PHOTO GALLERY