How social deprivation during early childhood impairs brain functions

   Sep 14, 3:17 pm

Washington, September 14 (ANI): Previous studies have shown that children who suffer severe neglect and social isolation have cognitive and social impairments as adults.

Now, research from Boston Children's Hospital has revealed, for the first time, how these functional impairments arise.

Social isolation during early life prevents the cells that make up the brain's white matter from maturing and producing the right amount of myelin, the fatty "insulation" on nerve fibers that helps them transmit long-distance messages within the brain, the study found.

It also identifies a molecular pathway that is involved in these abnormalities, showing it is disrupted by social isolation and suggesting it could potentially be targeted with drugs. Finally, the research indicates that the timing of social deprivation is an important factor in causing impairment.

The researchers, led by Gabriel Corfas, PhD, and Manabu Makinodan, MD, PhD, both of the F.M. Kirby Neurobiology Center at Boston Children's Hospital, modeled social deprivation in mice by putting them in isolation for two weeks.

When isolation occurred during a "critical period," starting three weeks after birth, cells called oligodendrocytes failed to mature in the prefrontal cortex, a brain region important for cognitive function and social behavior. As a result, nerve fibers had thinner coatings of myelin, which is produced by oligodendrocytes, and the mice showed impairments in social interaction and working memory.

Studies of children raised in institutions where neglect was rampant, including another recent study from Boston Children's Hospital, have found changes in white matter in the prefrontal cortex, but the mechanism for the changes hasn't been clear. The new study adds to a growing body of evidence that so-called glial cells, including oligodendrocytes, do more than just support neurons, but rather participate actively in setting up the brain's circuitry as they receive input from the environment.

"In general, the thinking has been that experience shapes the brain by influencing neurons," explained Corfas, the study's team leader and senior investigator, who also holds an appointment in the Departments of Neurology and Otolaryngology at Boston Children's Hospital and Harvard Medical School.

"We are showing that glial cells are also influenced by experience, and that this is an essential step in establishing normal, mature neuronal circuits. Our findings provide a cellular and molecular context to understand the consequences of social isolation," he added.

Myelin is essential in boosting the speed and efficiency of communication between different areas of the brain, so the decreased myelination may explain the social and cognitive deficits in the mice. Corfas has previously shown that abnormal myelination alters dopaminergic signaling in the brain, which could provide an alternative explanation for the findings.

The new study also showed that effects of social isolation are timing-dependent. If mice were isolated during a specific period in their development, they failed to recover functioning even when they were put back in a social environment. Conversely, if mice were put in isolation after this so-called critical period, they remained normal.

Finally, Corfas and colleagues identified a molecular signaling pathway through which social isolation leads to abnormal myelination. The brains of socially isolated mice had less neuregulin-1 (NRG1), a protein essential to the development of the nervous system. Furthermore, when the team eliminated an NRG1 receptor known as ErbB3 from oligodendrocytes, the effect was the same as being in isolation-myelination and behavior were abnormal even when the mice were in a stimulating, social environment.

"These observations indicate that the mechanisms we found are necessary for the brain to 'benefit' from early social experience," said Corfas.

The Corfas lab is now investigating drugs that might stimulate myelin growth by targeting NRG1, ErbB3 or related pathways.

A number of neuropsychiatric disorders such as schizophrenia and mood disorders have been linked to pathologic changes in white matter and myelination, and to disturbances in the NRG1-ErbB signaling pathway, Corfas notes. Thus, the findings of this study may offer a new approach to these disorders.

The findings are reported in the latest issue of the journal Science. (ANI)

South American tarantula gets John Lennon's moniker Oct 21, 4:37 pm
Washington, Oct 21 (ANI): Scientists have named a newly described tarantula species from Western Brazilian Amazonia as 'Bumba lennoni' 'in honor of John Lennon, a founder member of the legendary band the Beatles.
Full Story
Now, electronic 'EyeCane' that enables the blind Oct 21, 4:37 pm
Washington, Oct 21 (ANI): A new Electronic travel aids (ETA), the "EyeCane," has been developed that is tactile and provide auditory cues that can enhance the mobility of blind users.
Full Story
Why some of us suffer from 'winter blues' revealed Oct 21, 2:29 pm
Washington, Oct 21 (ANI): A new study has shed light on why some people suffer from the winter blues while others get through the winter without any problems.
Full Story
Scientists may soon 'switch off' cancer cells spread Oct 21, 1:15 pm
Washington, Oct 21 (ANI): A new research has explained how studying the diversity of cancer cells could help turn off mutations in cancer cells and strip their adaptability to drugs.
Full Story
Comments

LATEST STORIES
TOP VIDEO STORIES
PHOTO GALLERY