Gene therapy helps patients with damaged hearts grow new blood vessels

   Jan 5, 2:46 pm

Washington, January 5 (ANI): A cocktail of three specific genes can reprogram cells in the scars caused by heart attacks into functioning muscle cells, and the addition of a gene that stimulates the growth of blood vessels enhances that effect, researchers say.

"The idea of reprogramming scar tissue in the heart into functioning heart muscle was exciting," Dr. Todd K. Rosengart, corresponding author of the study from Baylor College of Medicine, said.

"The theory is that if you have a big heart attack, your doctor can just inject these three genes into the scar tissue during surgery and change it back into heart muscle. However, in these animal studies, we found that even the effect is enhanced when combined with the VEGF gene," he said.

During a heart attack, blood supply is cut off to the heart, resulting in the death of heart muscle. The damage leaves behind a scar and a much weakened heart. Eventually, most people who have had serious heart attacks will develop heart failure.

Changing the scar into heart muscle would strengthen the heart. To accomplish this, during surgery, Rosengart and his colleagues from Weill Cornell Medical College and Stony Brook University Medical Center transferred three forms of the vascular endothelial growth factor (VEGF) gene that enhances blood vessel growth or an inactive material (both attached to a gene vector) into the hearts of rats.

Three weeks later, the rats received either Gata4, Mef 2c and Tbx5 (the cocktail of transcription factor genes called GMT) or an inactive material. (A transcription factor binds to specific DNA sequences and starts the process that translates the genetic information into a protein.)

The GMT genes alone reduced the amount of scar tissue by half compared to animals that did not receive the genes, and there were more heart muscle cells in the animals that were treated with GMT.

The hearts of animals that received GMT alone also worked better as defined by ejection fraction than those who had not received genes. (Ejection fraction refers to the percentage of blood that is pumped out of a filled ventricle or pumping chamber of the heart.)

The hearts of the animals that had received both the GMT and the VEGF gene transfers had an ejection fraction four times greater than that of the animals that had received only the GMT transfer.

Rosengart emphasizes that more work needs to be completed to show that the effect of the VEGF is real, but it has real promise as part of a new treatment for heart attack that would minimize heart damage.

"We have shown both that GMT can effect change that enhances the activity of the heart and that the VEGF gene is effective in improving heart function even more," Dr. Ronald G. Crystal said.

The idea started with the notion of induced pluripotent stem cells - reprogramming mature specialized cells into stem cells that are immature and can differentiate into different specific cells needed in the body.

Dr. Shinya Yamanaka and Sir John B. Gurdon received the Nobel Prize in Medicine and Physiology for their work toward this goal this year.

However, use of induced pluripotent stem cells has the potential to cause tumours. To get around that, researchers in Dallas and San Francisco used the GMT cocktail to reprogram the scar cells into cardiomyocytes (cells that become heart muscle) in the living animals.

The study has been published online in the Journal of the American Heart Association. (ANI)

New 'biodiversity metric' developed to study climate change influence Sep 1, 5:38 pm
Washington, Sept 1 (ANI): Scientists have come up with a new biodiversity metric called phylogeographic endemism, to understand the influence of recurring climatic shifts over the last 120,000 years on current patterns of genetic diversity.
Full Story
Intense workout during long space flights can improve astronauts' heart health Sep 1, 4:54 pm
Washington, Sept 1 (ANI): A new study has revealed that Intense workout during long space flights can help astronauts protect their aerobic capacity.
Full Story
Factor in naked mole rat's helps maintain protein quality Sep 1, 4:53 pm
Washington, Sept 1 (ANI): A new study has demonstrated that a factor in the cells of naked mole rats protects and alters the activity of the proteasome, a garbage disposer for damaged and obsolete proteins.
Full Story
Possible key protein for curing pulmonary hypertension found Sep 1, 3:42 pm
Washington, Sept 1 (ANI): A new study has found that oxidized lipids, may also contribute to pulmonary hypertension, a serious lung disease that narrows the small blood vessels in the lungs.
Full Story
Comments

LATEST STORIES
TOP VIDEO STORIES
PHOTO GALLERY